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Abstract. The Schrodinger equation for an electron near a randomly rough metal-metal 
(or metal-vacuum) interface is approximately solved. The wavefunction and probability 
currents are averaged over all realisations of the interface characterised by its root-mean- 
square departure from flatness and the extent of its lateral correlation, and the results are 
used to set up simple boundary conditions for the Boltzmann transport equation. These are 
in the form of angle-dependent transmission and reflection coefficients, generalising Fuchs’ 
reflectivity parameter, but given as explicit functions of observable properties of the inter- 
face. These results are further applied to the calculation of the electrical conductivity of thin 
films and foils, and of double-layer metallic films. 

1. Introduction 

Most quantitative treatments of surface and size effects in the transport properties of 
solids have been based on semiclassical methods in which the Boltzmann equation 
is solved in conjunction with Fuchs’ (1938) boundary conditions (Sondheimer 1952, 
Chambers 1969). These conditions assert that in each surface a fixed fraction p 
(0 S p C 1) of the incident electrons are reflected specularly, while the rest are scattered 
into the equilibrium distribution function. 

Formerly, this specularity parameterp was taken to be a phenomenological quantity, 
which could be varied freely in order to fit the theory to the experiments. As the accuracy 
of the data improved, however, it has become increasingly apparent that the physical 
nature of the surface scattering should be considered more seriously. Parrot (1965), for 
instance, has found that size effects in Bi could be explained only by supposing thatp is 
strongly dependent on the angle of incidence 8; it can be taken that p = 0 for 8 < 8, and 
p = 1 for 8, < 8 < n/2, where 8, is a certain cut-off angle. Brandli and Cotti (1965) used 
a specularity of the same form in a study of eddy current resistance of thin films. 

Ziman (1960) calculated the quantum-mechanical scattering of conduction electrons 
by the asperities of the surface of the sample. As the detailed distribution of these 
asperities is in general unknown, Ziman characterised them by statistical parameters, 
supposing that the departure of the actual surface from flatness and the surface auto- 
correlation function were both Gaussian. From the angular spectrum of the reflected 
wave, Ziman extracted a formula for the specularityp as a function of these parameters. 
Soffer (1967,1970) generalised Ziman’s calculation by considering angles of incidence 
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other than normal and by thoroughly enforcing the law of conservation of the number 
of particles. A calculation of similar scope was performed by Falkovsky (1970a, b, 1980), 
who solved the Boltzmann equation approximately in the presence of a surface composed 
of random flat sections of known average characteristics. 

Greene (1966a, b) investigated the scattering properties of surfaces with roughness 
smaller in extent than the electron wavelength, and derived boundary conditions sig- 
nificantly different than those of Fuchs. Greene’s conditions were expressed in terms of 
another parameter, different from the specularity p ,  called the kinetic specularity, and 
which is always smaller than the former. Indeed, in the calculation of Greene and 
O’Donell (1966) of the scattering of electrons by random surface charges in semi- 
conductors, the kinetic specularity shows a very strong angular dependence, while p is 
practically a constant. 

These conclusions were somewhat marred because Greene made an incorrect usage 
of the Pauli principle. Nevertheless, Greene’s ideas have recently been corrected and 
extended, and a number of so-called boundary conditions in integral form have been 
obtained (Okulov and Ustinov 1979). 

For a number of years, Soffer’s boundary conditions were considered to be the best 
available. They have been applied, for instance, to the calculation of the electrical 
conductivity of thin films and wires (Sambles et a1 1982b), of thermoelectric effects in 
thin films (Sambles and Priest 1984), etc. It has been found that, in contrast to theories 
based on Fuchs’ conditions, calculations using Soffer’s specularity do not require 
unphysical assumptions to give satisfactory agreement with experiments (Sambles and 
Elsom 1980,1985, Sambles and Preist 1982, Stesmans 1982, 1983, Sambles et a1 1981, 
1982a, Sambles and Mundy 1983). 

Recently I have obtained another, closed-form expression for a specularityp depend- 
ing on angle, generalising Soffer’s formula, and applied it to the calculation of transport 
properties of thin films and wires (Moraga 1987,1988). These results will be discussed 
further in the following. 

All these considerations apply to the scattering of electrons by a solid-vacuum 
interface. However, it is clear that the effects on the conduction electrons due to the 
scattering at the interface between two solids is of comparable importance. For instance, 
there is a considerable amount of experimental research on the influence of thin metallic 
overlayers on the electrical conductivity of various metals (Lucas 1964, 1968, 1971, 
Chopra and Randlett 1967, Berman and Juretschke 1971). Further, recently it has 
become possible to manufacture artificial metallic superlattices in the form of multilayer 
films (Schuller 1980, Falco et a1 1985). Earlier theoretical treatments of the transport 
properties of these materials had to proceed under the unlikely assumption that there 
was no scattering at the boundary between the metals. An improved theoretical model 
for the electrical conductivity of multilayer films was proposed by Carcia and Suna 
(1983), who introduced a phenomenological probability t of coherent passage across 
each interface. Recently, Dimmich (1985) noted that, due to the difference in electron 
wavelengths of the two metals, the probability tAB of passage from metal A to metal B 
ought to be different from the probability t g A  of transit in the opposite direction, and 
obtained a solution of the Boltzmann transport equation appropriate for this case. 

These theories underestimate, however, the resistivity of a multilayer system, 
because the boundary conditions at each interface are erroneously prescribed. Thus, as 
will be demonstrated in the detailed calculations given below, it becomes necessary to 
introduce further probabilities ?-AA and rgg of coherent reflection at the interface between 
metals A and B, in direct analogy with Fuchs’ specularity p .  Clearly in this case 
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Figure 1. The interface between metals A and B is modelled by a potential step equal to V,  
for z < 5 and V ,  for z > 5,  where 5 (the departure of the surface from flatness) is a random 
function of x ,  y. 

tAB + rAA < 1, since it is always possible that the scattering of each electron by the 
interface will not only preclude its passage to the adjoining metal, but can also remove 
it from the out-of-balance distribution and thus from the entire transport process. 

The purpose of this paper is to calculate, in closed form and in terms of observable 
properties of the interface, these probabilities of coherent reflection and passage. It 
will be seen that: (i) they are proportional to the corresponding quantum-mechanical 
reflection and transmission coefficients, and to the exponential of a function depending 
on the root-mean-square (RMS) amplitude of the surface asperities, and on its lateral 
correlation length; (ii) they are strongly dependent on the angle of incidence, so that in 
practice both the coherent passage and the specular reflection are generally suppressed 
except for the case of glancing electrons; and (iii) in the case of a metal-vacuum 
interface the probability r reduces to the specularityp calculated previously (which in the 
appropriate limit further reduce to the earlier result of Soffer), while in this case t clearly 
vanishes. 

This paper also contains two applications of these new boundary conditions. First, I 
calculate the electrical resistivity of thin aluminium films and foils as a function of 
temperature, and compare the results with the measurements of Sambles et a1 (1981), 
which are perhaps the best available at present. Furthermore, the conductivity of a 
double-layer metal film is calculated and contrasted with experimental results of Lucas 
(1968). 

2. The wavefunction of an electron in the vicinity of a randomly rough surface 

In this section I shall calculate the wavefunction of a conduction electron traversing a 
system composed of two metals joined on an irregular surface. These metals, to be called 
A and B (see figures 1 and 2), fill the half-spaces z < t(x, y )  and z > c ( x ,  y )  respectively, 
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Figure 2. (a )  In a metal-vacuum interfacep is the 
fraction of electrons that are reflected specularly. 
(b)  In a metal-metal interface, rAA is the fraction 
of electrons coming from metal A that are 
reflected specularly back into A, and tBA is the 
fraction passing from B to A along the classical 
trajectory. 

(6) 

where the profile function f specifies the departure of the actual from the average (or 
ideal) surface, which we take here to be the x ,  y plane. 

As we intend to develop boundary conditions to be used in ordinary applications of 
the Boltzmann transport equation, the physical nature of the interface will be simplified 
as much as possible. Thus, we shall neglect the detailed contributions of the periodic 
ionic potentials of each metal and the effects of the impurities, and shall represent them 
by an average that has constant values VA and VB at each side of the surface with 
imaginary parts equal to h/2tA and fi/22B, where tA and zB are the respective relaxation 
times. Further, the actual band structure of the bulk metals will be replaced by simple 
parabolic-type bands. 

Some of these simplifications are not essential and can be relaxed if necessary. The 
quantum-mechanical problem of calculating the transmission and reflection coefficients 
of such a system will be solved here, however, without further assumptions by means of 
the so-called smoothing method (Keller 1962, Watson and Keller 1984, Brown 1984). In 
order to have explicit formulae for the resulting transmission and reflection coefficients, a 
number of approximations of a mathematical nature will be introduced at the end of the 
calculations. These, of course, are not of a fundamental character. On the other hand, 
I believe that no solution of this problem has a physical meaning except a statistical 
treatment based on averaged properties of the rough surface. The process of averaging 
will introduce difficulties of another kind, which will be discussed at that point. 

In these circumstances, the wavefunction q(x) is everywhere determined by its 
values at the interface, i.e. 

and 
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average surface; A = f i2/2m; the symbol 
and is 0 otherwise (and similarly for 

is equal to 1 if the point x lies in metal A 
is a source function of arbitrary strength 

G, (a  = A, B )  denotes the electron Green function in each (unbounded) metal, which 
in the simple model employed here is given by 

DV(xb) is, except for a scale factor, the normal derivative of 3 evaluated at the surface 
xb = X + C(X)ex, viz. 

and DIG,(x,  x’) denotes the same derivative applied to the first argument of the Green 
function. 

In these formulae K = kxex  + k,e, is a two-dimensional vector parallel to the z = 0 
plane; and 7% denotes the function 

[K2 + ( -EF + v,)/k]1/2 ifAK2>EF-V, 

-i[(EF - V,)/A - K2I1/’ otherwise 
Y% = { 

where a = A, B and EF denotes the Fermi energy common to the two metals in contact. 
The two unknowns in (1) and ( 2 )  are V(xb) and D@(xb). These will be approximately 

determined by means of an asymptotic condition. Let us first make z * 6 in (1) and z Q 
6 in ( 2 ) ,  where 6 is the RMS amplitude of the surface asperities. We have that 

and 

x {li@ + R ) V C Y  - Y B K l V R ( S Y )  - V k ( C Y > )  

where we have denoted the profile function simply by C y ,  and have put 



J 

These equations will be Fourier-transformed. We start by defining 

and obtain, as a consequence of the Fourier theorem, the inverse formulae 

and also that 

and 

These much simpler equations will be solved presently. In order to do this, the 
properties of the profile function ex must first be prescribed. It is clear that in practice 
this function is not known in great detail. Usually only a number of statistical properties 
of the surface are amenable to measurements, such as some average value of the 
departure of the actual surface from flatness, or the extent of the lateral correlation. 
Correspondingly, one should calculate quantities that do not depend on a particular 
realisation of the surface roughness profile, but are averages taken over ensembles of 
such functions, characterised by some statistical parameters. 
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On the other hand, it is clear that not every averaged quantity is physically meaning- 
ful. Thus, although it is correct to base a given calculation on averaged particle densities 
or particle currents-r more generally, averaged Green functions-the concept of an 
averaged wavefunction probably has no proper meaning. In this paper we calculate 
transmission and reflection coefficients, that is, quotients of random (reflected and 
transmitted) currents over a deterministic one. Then, even if we utilise such averaged 
wavefunctions in intermediate mathematical steps, our final results will have, I believe, 
reasonable counterparts in reality. 

Customarily, the function is assumed to be a random variable with a Gaussian 
probability distribution having zero mean and a standard deviation 

where (. . .) denotes the average taken over the probability distribution. Here S is the 
RMS value of the roughness amplitude, and W(X)  is taken to be 

w(X)  = exp( -X2/a2)  (23) 

where a is the lateral correlation length. 
Other probability functions (and other forms of the correlation function W) have 

been considered, but experimental determinations of the statistical properties of real 
surfaces tend to favour those hypothesised here (Rasigni et a1 1984). 

In these circumstances, it is easy to show that, for the function defined in (12) 

Let us further denote Ah thefluctuation of a random quantity h 

Ah = h - (h).  (26) 
Then, we can write equations (19) and (20) as a pair of Fredholm inhomogeneous 
integral equations 

yi+R$R;K - $ k ; K  = ( ~ Y $ A R / E $ ) ( ~ ~ ~ . ) ~ W O  

and 

where we have put 
(? )a  - f = AgK,Q/g%- 

The pair (27) and (28) can now be written in its final form 
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where the matrices Y, and c are given by 

and 

with 

(33) 

(+)A (-)B 
c(2.1) = ( - a i ; K , P Y i + R f  K + R ; K - P  + d ; K , P Y $ + R f  K + R ; K - P ) / r $ ? R  

c(2'2) = ( - Y i + R f K + R ; K - P  - Y $ + R f K + R ; K - P ) I r $ : R  

(36) 

(37) 

(38) 

(+)A (-)B 

and 

r p  = ?$ + 78. 
We now apply the smoothing method in order to solve equation (30) approximately. 

The method was developed originally by Keller (1962), and has recently been applied 
by Watson and Keller (1984) to the case of surface scattering of scalar waves, and by 
Brown (1984) and Maradudin (1986) to the electromagnetic problem. Let us first write 
equation (30) schematically as 

Then, it is easy to see that 

Y = x +  K(Y) I 
where the new inhomogeneous part and kernel are given, respectively, by 

x = y ( 0 )  + 

and 

K = c +  cAK. 

We note, also, that (40) implies that 
I 

(W = (x> + I (K)(W 

and 

AY = A x  + AK(Y). I 
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In practice, (40) will be solved by successive application of these two equations. As 
the operation of taking averages restores the translational symmetry in the plane of the 
ideal surface, (43) is an algebraic rather than an integral equation. Thus (re-establishing 
the indices suppressed in passing from (30) to (39)), 

(KR;K,P) = KR;K(2n)’g(K - p )  

( V R ; K )  = (1 - ER;K)-’yf!K 

(45) 

and 

(46) 

because in this case Y(O) is not a random variable, so that x = Y(O) by (41). From this 
value of the average (Y), equation (44) gives directly the value of the fluctuation AY, 
and thus the complete Y. 

In the present case, it can be shown without difficulty that 

and 

where 

by the assumptions preceding (24). Thus, one has that 

where we write 
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+(a” + y B ) ( a A  + + (aA + yA)(aB + yB)F(-)BsA 
+(aB - yA)(aB - yA)F(+)B,B]/(TAB)2. (59) 

The values of G K P  and $kip-the unknowns in (27) and (28)-are obtained by 
inserting formulae (51)-(54) and (59) into (58) ,  and then into (43). The resulting terms 
have, however, quite different magnitudes. From (21), for instance, we have that 

while 
a$;O,P’ + 6 ’ + R  % a$;O,O + y f  = 

& ; O , P  + Y $ + R  y$ - 6 
after multiplication by the respective function F and integration over P. Thus we have, 
retaining only the terms that are important in this sense, 

and 

exactly up to terms of order F. We see that, with the same accuracy, we can write 

and 

with 

By (16) and (17) we have determined the average value of the wavefunction and its 
derivative at the interface 

and 

with a source in metal A. 
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3. The average wavefunction 

We are now in a position to calculate the average wavefunction in the entire system, 
and then the diverse particle currents, which will give the reflection and transmission 
coefficients. Of course, the averaged currents cannot be computed merely as simple 
products of average wavefunctions. Rather, the smoothing method will be applied in a 
way epitomised by the passage from equation (70) to (76). Thus, in order to calculate 
the mean of a given product of random functions one sets up, and approximately solves, 
a suitable integral equation whose kernel and inhomogeneous part have been previously 
calculated from simpler averages. 

Let us consider first metal A. Setting z 6 - 6 in (l) ,  we have 

{-[i(K +R)VcY - Y$lVR(cY) + V k ( t Y ) > *  
According to (12)-(14), this equation can be written 

(68) gK;K-R-P(-aR;K-R,P$R;P (-)A A + $ k ; P ) *  

(-)A - We see that the average wavefunction (V(z)) depends on the averages (gK;Q I / , J ~ ; ~ )  

This average can be calculated as follows. First, we note from (30) that &;‘vR;p 

and (gK)eA$kip), or, by (31), on (&)eAvR;p), where we have put Q = K - R - P. 

satisfies the integral equation 

where (KR;p,pc) is given by (39) and (50)-(54). On the other hand, 

exactly up to terms of order F. The first term of (71) is 

while the second term is given by 
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and 

(75) 

(76) 

B F(+)B A S%,% = ( ~ P , o  + Y K )  P + K : K ( P )  

( g ( K g y R ; P )  = ( l  - K R ; P ) - l J K , Q , R . P *  

and we have used (47) and (48). From (70) we see that 

The first factor has been calculated in (58), while the second is given by (71). Thus, 
we obtain the required averages. In order to determine the wavefunction we need the 
linear combination of averages 

(77) (-)A - (--)A - d 2 P d 2 R  
( - k; K - R , P (g  K; K - R - P V R ; P ) + (g K; K - R - P k ; P )). I ( 2 4 4  

This is given, neglecting terms of order F 2 ,  by five terms, which can be obtained in a 
straightforward way from previous formulae. Of these, we can neglect two by the same 
reasoning leading to (60) and (61). We have then 

(76) = 2yAA " - " (1 + + O(F2) K K A  
Y K  + YE 

where 

(80) (-)A A d 2 P  M$,A = - [F(+)A,A I ( 2 4 2  P + K ; K ( ~ )  - FP+K;'P (p)1. 

Thus, by (68), the average wavefunction for an electron in metal A (but travelling 
not too near the interface) is given by the simple formula 

Proceeding in an exactly parallel way, we have that the average wavefunction for an 
electron lying in metal B (but, again, not too near the interface) is given by 

where gK is given in (25), and 

The first term in (81) represents a source of arbitrary strength located in metal A. 
Consequently, the second term in (81) is the reflected wave, while (82) represents the 
transmitted wave. Thus we see that, if one neglects correlations that are necessarily 
short-ranged, the reflection and transmission coefficients of the metal-metal interface 
are given, respectively, by 

rA,A(K) = RK exp( - 2  Re (84) 
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f ( K )  

and 

where RK and DK are the quantum-mechanical reflection and transmission coefficients 
of the ideal surface (Landau and Lifshitz 1958) if one further neglects the detailed 
structure of the diffusely reflected and transmitted components (Moraga 1987). 

4. Applications 

4.1. Electrical conductivity of thin films and foils 

In this section I shall specialise the expressions for the reflection and transmission 
probabilities to the case of the metal-vacuum interface. In this case VA < EF < VB and, 
by (6), yA is nearly pure imaginary while yB is real. Thus, RK = 1 while DK = 0 and 

p(U) E rA,A(K) = eXp(2 Re M$A) (86) 

by (84), where U is the cosine of the angle of incidence and is given by (80). Formula 
(86) has been obtained previously by means of a number of resummations of a series 

Figure3. Fit of equations (86) and (87) (full 
curves) to data obtained from Sambles et 
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Sambles et a1 

expansion in powers of 6 (Moraga 1987); we can see now that its validity depends neither 
on the correctness of that approach nor on the adequacy of the infinite barrier model. 

The experimental accuracy of the present theory can be tested at this point. As is 
well known, the electrical conductivity U of a metallic film of thickness K (in units of the 
mean free path of the conduction electrons) is given by (Fuchs 1938) 

where U, is the conductivity of the bulk metal andp is given by (86). This conductivity 
has been subject to a number of precise measurements, of which perhaps the best-in 
terms of the high purity of the samples used and the range of thicknesses explored-are 
those made on thin aluminium films and foils by Sambles et a1 (1981). I have fitted 
equations (86) and (87) to these data (figures 3 and4), supposing, perhaps too arbitrarily, 
that both the RMS departure from flatness 6 and the lateral correlation length of all 
surfaces was equal to 5 au. 

It is seen that the fit is good, although not perfect. The fit can certainly be improved 
by taking into account, for instance, the effects of small-angle scattering (Olsen 1958, 
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Figure 5. Thin film 0 < z < a with an overlayer 
a < z < a + b. Scattering occurs at all the rough 
surfaces, with the transmission and reflection 
coefficients shown. 0 --_ 

Azbel' and Gurzhi 1962) which are absent in (87). On the other hand, in the resistivity 
of the bulk used in these calculations I have included a term 10.0T2 f SZ m coming from 
the effects of the electron-electron scattering. The adequacy of such a term seems now, 
however, to be debatable and, if I have to drop it, the fit will surely be somewhat spoiled. 

4.2. Electrical conductivity of double-layer films 

In order to explore further the influence of the surfaces on the conductivity of solids, a 
number of measurements have been made on double-layer thin films. Experimentally 
it has been found that the resistance of a thin-film sample can be increased by the 
deposition of a layer of a different (or even of the same) metal. This increment has been 
attributed to a change of the Fuchs' parameter of the surface from p = 1 to p = 0 as a 
result of the added overlayer (Lucas 1964, 1968, 1971, Chopra and Randlett 1967, 
Berman and Juretschke 1971). 

Unfortunately, the theoretical analysis of this phenomenon had to proceed under 
the hypothesis that no additional scattering occurred at the interfaces between the layers. 
It is, of course, very unlikely that this assertion holds even approximately true. By using 
the results of the previous section we can, however, obtain a new theoretical description 
that is free from this limitation. 

We shall solve here the Boltzmann equation for the double-layer metallic film shown 
in figure 5 for the case of an electric field applied in the x direction. According to the 
results of the last section, the appropriate boundary conditions applying at the rough 
surfaces z = 0, z = a and z = a + b,  respectively, are 

and 

f h-)(a + b,  -U,) = p b  f g ) ( a  + b,  U,) + gC (91) 

where U, is the z component of the electron velocity, and the indices + and - of the 
distribution function f $')(z, U,) denote the branches of this function corresponding to 
the cases U, > 0 and U, < 0, respectively, for electrons travelling in metal a = A, B. 
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These conditions suffice for determining a unique solution of the transport linearised 
in the usual way (together with the diffuse components ga and g:). The longitudinal 
conductivity of the system is 

where a, and oB are the bulk conductivities of the respective metals, 

and 

with 

A = 1 -Para&: -Pb[Tb +Pa(latb - r a r b ) E ? ; I E i  

Ua,b = ( l -pa ) ( l - rbpbEi )+Pa{ ( l  - tb)+tb(l-pb)Eb 

+Pb[tb(l  - T b  - l a )  - r b ( l - r a  -tb)]E;)Ea 

and 

V a , b  = l - r a - t b + t b ( l - p b ) & , + P a { l - r a - t b + t b ( l - p b ) & b  

+Pb [ t b  ( 1  - rb - t a )  - rb ( 1  - r a  - tb>]E2b}Ea- (97)  
Here and Vb,& are obtained from these formulae by interchanging everywhere a 
by b ,  K ,  and Kb are the film thicknesses over their respective mean free paths, and 
E, = exp(-Kj/u) ( j  = a ,  b). 

In figure 6 we compare values calculated from equations (92)-(97) with experimental 
measurements of the electrical resistance of a number of metallic overlayers deposited 
over gold substrata made by Lucas (1968). It is seen that there is a good fit when the 
thickness of the added material is not too small. The curves, however, are qualitatively 
different, since the experimental values show a maximum as a function of thickness, 
while the theoretical curves are monotonic. 

Again, a better fit (together with a resistance maximum) could have been obtained 
by adjusting the reflectivity of the added layer according to an empirical function of its 
thickness (Lucas 1968). But it is likely that this procedure would have been erroneous, 
because ordinary transport theory in fact fails for samples that are too thin. The reason 
for this may not only lie in the failure of the transport equation to take into account 
quantum effects appearing when one of the dimensions of the specimen is comparable 
with the electron wavelength; it may also be a consequence of the fact that, when the 
specimen size is diminished beyond a certain point, the boundary conditions cannot be 
prescribed any more in each surface entirely independently of each other. 

Thus, in order to obtain significant improvements of the theory in this respect, one 
can proceed only in two directions. Either one develops more generalised boundary 
conditions,taking into account the reflectivity effects of the entire overlayer (and not, 
as done here, as an incoherent superposition of two surfaces); or one entirely abandons 
the programme of transport theory and employ methods that are quantum-mechanical 
throughout (Rammer and Smith 1986). 

(95)  

(96)  
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Figure 6. Electrical resistance of metallic 
overlayers in units of the substrate resistance as 
a function of the added mass/area: full curves, 
experimental data from Lucas (1968); chain 
curves, calculated values; (A) Pb over Au, (B) A1 
over Au, ( C )  Ag over Au, (D) Bi over Au, (E) Cr 
over Au, (F) Fe over Au. 

These developments are, however, well outside the scope of this paper. 

5. Conclusions 

Okulov and Ustinov (1978) have pointed out that a rigorous formulation of the boundary 
conditions for the Boltzmann equation should begin by solving the problem of an 
electron being transmitted or reflected by an ideal surface. This limited objective has, 
of course, never been fully fulfilled. In order to do this, one should calculate first the 
wavefunction describing the stationary state of a conduction electron in the field of the 
potential barrier created at the interface, taking into account the effects of the ionic 
lattice whose periodicity is broken by the boundary. Even then, it is not automatically 
assured that a perfect surface would conserve the tangential component of the momen- 
tum, because a vicinal surface, for instance, would form steps and act as a cross-grating 
(Muser 1954). Further, even in cases in which the two-dimensional Bloch theorem is 
valid and a simple dispersion relation exists between the energy and the tangential 
component of the momentum, the analysis becomes complicated by the necessity to 
distinguish between normal and umklapp transmission and reflection processes at the 
interface. 

In this paper I have obtained boundary conditions for the Boltzmann transport 
equation at a rough metallic interface by a drastic simplification of the problem. First, 
the complicated fields at the potential barrier are replaced by a simple potential step of 
a suitable energy. Further, the contributions of the periodic ionic potential are simply 
ignored, the tangential component of the momentum is supposed to be irrestrictedly 
conserved, and a simple parabolic-type dispersion relation is assumed. Thus, an electron 
traversing an interface can only be refracted (due to its change of wavelength) or be 
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incoherently scattered into the equilibrium distribution, or, alternatively, it can be 
specularly reflected back into the original metal. For a given event, either of these 
processes can occur according to well defined probabilities. These probabilities are 
obtained here by means of a well defined procedure that amounts to solving the 
Schrodinger equation for the simplified model just described, and then calculating the 
quantum-mechanical reflection and transmission coefficients. Proceeding in this way, 
we find that, in spite of their approximate character, these probabilities are coherently 
related and do not, for instance, add to more than 1 for these exclusive processes. They 
are, furthermore, calculable in terms of observable properties of the interface, i.e. the 
height of the potential step, the value of the Fermi energy and the two statistical 
parameters that characterise here the surface roughness profile. 

I believe that these new results are avalid generalisation of the ordinary (Fuchs 1938) 
boundary conditions for the Boltzmann transport equation. First, in the case of a metal- 
vacuum interface, these conditions reduce to the use of an angle-dependent reflection 
coefficient, which in the proper limits coincides with the well known Soffer and Shen- 
Maradudin forms and are thus well validated (Moraga 1987). Further, one can solve 
the Boltzmann equation plus these new boundary conditions and calculate transport 
properties for systems that have an experimental counterpart. In this paper I have done 
this for the case of the electrical resistivity of thin films and foils, and also of a substratum 
with a thin metallic overlayer. These results have been compared with the experiments, 
and satisfactory agreements have been obtained. 

One may in the future hope to see these new boundary conditions tested in other 
real systems, thereby increasing our grasp of their domain of validity and thus our 
understanding of the interesting phenomena arising in the transport properties of small 
samples. 
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